秒速时时彩开奖

中国科学院自动化研究所(洛阳)机器人与智能装备创新研究院

秒速时时彩开奖
微信

中国科学院自动化研究所
(洛阳)机器人与智能装备创新研究院
微信公众号

自动化所陶建华团队: 基于真实环境的面部表情分析

来源:中科院自动化所 发布时间:2019-05-09 浏览次数:99
打印 收藏 关闭
字体【
视力保护色

  【紫冬新作】计算机如果能够像人类那样具有理解和表达情感的能力,将从根本上改变人与计算机之间的关系,使计算机能够更好地为人类服务。表情识别是计算机理解人们情感的一种方式,也是人们探索和理解智能的有效途径。由于面部表情的多样性和复杂性,并且涉及生理学及心理学等相关知识,表情识别具有较大难度。自动化所陶建华研究员团队基于真实场景,将人脸分为六个区域,可真实有效地完成面部表情分析。


  随着人工智能的发展,构建更加自然的人机交互系统(human machine interaction (HMI) systems)跃升为一大研究热点。受心理学的启发,Prendinger、Martinovski和Traum等研究者指出,关注对话主体或对话系统中的情感信息可以有效提升对话满意度,同时减少对话系统出现崩溃的情况。


image.png

  因此,作为人机交互领域的重要研究方向,情感识别吸引了越来越多的目光,而面部表情识别因具有很大的应用价值,更是备受瞩目。例如,不同用户每天都会上传大量图像,这些图像中所呈现的情感状态对于完善推荐系统非常有用,可决定是否向用户推荐相关产品信息。为了自动识别面部图像的情感状态,面部表情识别技术是关键。


  过去识别面部表情包含多个步骤,需借助手工提取的面部特征,分类器和融合方法。通常,面部特征可以分为两部分:外观特征和几何特征。外观特征研究广泛,包含了方向梯度直方图、局部二值模式、局部相位量化以及尺度不变特征变换。几何特征考虑了头部姿势与人脸关键点坐标。


image.png


  然而,多步预测方法中各步的目标不一致,同时学界对于情感识别中提取特征的标准也没有达成一致。为了正确应对这些问题,端到端方法取代了多步法,并成为解决诸如图像分类、机器翻译、场景分类、图片标题生成以及语音合成等众多问题时所能采取的最先进的方法。在端对端面部表情识别系统中,将标准大小的原始图片作为输入的数据,情感标签作为输出的结果。端对端图像分类器,包括AlexNet、VGG、GoogLeNet、ResNet、DenseNet以及模型的其他变化形式,在经过训练后,能根据输入图片得出对应的情感预测结果。


  尽管研究者们在提升面部表情识别的性能方面做出了很大努力,但当前研究仍然面临诸多挑战。现实生活中,研究者很难得到不受其他物体遮挡的面部图像。此外,人们的面部也并非时刻保持正向,光照并非时刻达到最佳。因此,在表情识别任务中,获取没有任何干扰的正面人脸成为一大难题。


  鉴于前人相关研究存在很多局限性,本研究集中讨论了真实场景中,由不同区域人脸数据生成的情感预测结果的真实性。例如,当只能获取嘴部区域数据时,表情分类器的预测结果为"快乐",但我们如何计算预测结果的可信值呢?这一问题可以转换成:有多少关于"快乐"的信息可以通过嘴部表达出来?


image.png


  本研究将整个面部划分为六个子区域:鼻部、嘴部、眼部、鼻子至嘴之间、鼻子至眼睛之间,以及嘴巴至眼睛之间。此外,本研究还分析了在现实场景中,不同面部区域对表达不同表情所起到的作用。借助CAM技术,进行情感识别时,面部相关区域得以视觉化。为取得更有说服力的结果,实验分别在三个不同数据库中开展:FER+、RAF-DB 以及ExpW数据集。


  本研究与Busso的研究有相似之处,他把人脸分为前额、眉毛、眼睛下部、右脸颊、左脸颊五个部分,而后每个区域均由单独的分类器进行表情分类。但是他的实验在可控制条件的实验室环境中进行,而本研究的实验均在真实场景中开展,同时,还将面部划分为更小的区域,评价方法也更多样。


  研究成果可以与心理学相结合,对于研究人的行为具有重要作用,而且还可拓展至情感表达的理解当中。

  • 上一篇:没有了

  • 下一篇:神眼小V”——世园会的全天候运营助手
  • 中国科学院自动化研究所
    (洛阳)机器人与智能装备创新研究院

    版权归中国科学院自动化研究所(洛阳)机器人与智能装备创新研究院所有   备案编号:
    地址:河南省洛阳市涧西区龙裕路国家大学科技园3-2号楼       电话:0379-63002388

    玖玖棋牌游戏中心 青海快3开奖 秒速时时彩平台 青海快3开奖 秒速时时彩开奖 秒速时时彩计划 235棋牌游戏 青海快3走势 玖玖棋牌游戏 秒速时时彩平台